- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Agrawal, Gagan (1)
-
Antonopoulos, Christos D (1)
-
Bellas, Nikolaos (1)
-
Guan, Jiexiong (1)
-
Hu, Zhenqing (1)
-
Lalis, Spyros (1)
-
Ren, Bin (1)
-
Smirni, Evgenia (1)
-
Zhou, Gang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The demand for Deep Neural Network (DNN) execution (including both inference and training) on mobile system-on-a-chip (SoCs) has surged, driven by factors like the need for real-time latency, privacy, and reducing vendors’ costs. Mainstream mobile GPUs (e.g., Qualcomm Adreno GPUs) usually have a 2.5D L1 texture cache that offers throughput superior to that of on-chip memory. However, to date, there is limited understanding of the performance features of such a 2.5D cache, which limits the optimization potential. This paper introduces TMModel, a framework with three components: 1) a set of micro-benchmarks and a novel performance assessment methodology to characterize a non-well-documented architecture with 2D memory, 2) a complete analytical performance model configurable for different data access pattern(s), tiling size(s), and other GPU execution parameters for a given operator (and associated size and shape), and 3) a compilation framework incorporating this model and generating optimized code with low overhead. TMModel is validated both on a set of DNN kernels and for training complete models on a mobile GPU, and compared against both popular mobile DNN frameworks and another GPU performance model. Evaluation results demonstrate that TMModel outperforms all baselines, achieving 1.48 − 3.61× speedup on individual kernels and 1.83 − 66.1× speedup for end-to-end on-device training with only 0.25% − 18.5% the tuning cost of the baselines.more » « lessFree, publicly-accessible full text available June 8, 2026
An official website of the United States government
